4.3 Article

Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix

Journal

FUNGAL BIOLOGY
Volume 125, Issue 2, Pages 115-122

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.funbio.2019.11.001

Keywords

Alternating temperatures; Biosynthetic genes; Black aspergilli; Carbon dioxide; Ecophysiology; Mycotoxins

Categories

Ask authors/readers for more resources

This study explored the impact of climate change on Aspergillus carbonarius and Ochratoxin A contamination of grapes, revealing that elevated CO2 concentrations may stimulate the growth and OTA production of A. carbonarius, thereby increasing the risk of OTA contamination. These findings have significant implications for grape wine production.
Little is known on the impact that climate change (CC) may have on Aspergillus carbonarius and Ochratoxin A (OTA) contamination of grapes, especially in the Mediterranean region where in CC scenarios temperature are expected to increase by +2-5 degrees C and CO2 from 400 to 800/1200 ppm. This study examined the effect of (i) current and increased temperature in the alternating 11.5 h dark/12.5 h light cycle (15-28 degrees C vs 18-34 degrees C), representative of the North Apulia area, South Italy and (ii) existing and predicted CO2 concentrations (400 vs 1000 ppm), on growth, expression of biosynthetic genes (AcOTApks, AcOTAnrps, AcOTAhal, AcOTAp450, AcOTAbZIP) and regulatory genes of Velvet complex (laeA/veA/velB, velvet complex) involved in OTA biosynthesis and OTA phenotypic production by three strains of A. carbonarius. The experiments made on a grape-based matrix showed that elevated CO2 resulted in a general stimulation of growth and OTA production. These results were also supported by the up regulation of both structural and regulatory genes involved in the OTA biosynthesis. Our work has shown for the first time that elevated CO2 concentration in the Mediterranean region may result in an increased risk of OTA contamination in the wine production chain. (C) 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available