4.7 Article

Binding of rose bengal to lysozyme modulates photooxidation and cross-linking reactions involving tyrosine and tryptophan

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 143, Issue -, Pages 375-386

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2019.08.023

Keywords

Rose bengal; Type 1 mechanism; Type 2 mechanism; Lysozyme; Protein cross-linking; Photo-oxidation; Tryptophan; Tyrosine

Funding

  1. Fondecyt [1180642]
  2. Novo Nordisk Foundation [NNF13OC0004294]
  3. Fondequip [EQM170120]

Ask authors/readers for more resources

This work examined the hypothesis that interactions of Rose Bengal (RB2-) with lysozyme (Lyso) might mediate type 1 photoreactions resulting in protein cross-linking even under conditions favoring O-1(2) formation. UV-visible spectrophotometry, isothermal titration calorimetry (ITC), and docking analysis were employed to characterize RB2--Lyso interactions, while oxidation of Lyso was studied by SDS-PAGE gels, extent of amino acid consumption, and liquid chromatography (LC) with mass detection (employing tryptic peptides digested in H-2 O-18 and H2O). Docking studies showed five interaction sites including the active site. Hydrophobic interactions induced a red shift of the visible spectrum of RB2- giving a K-d of 4.8 mu M, while data from ITC studies, yielded a K-d of 0.68 mu M as an average of the interactions with stoichiometry of 3.3 RB2- per Lyso. LC analysis showed a high consumption of readily-oxidized amino acids (His, Trp, Met and Tyr) located at different and diverse locations within the protein. This appears to reflect extensive damage on the protein probably mediated by a type 2 (O-1(2)) mechanism. In contrast, docking and mass spectrometry analysis provided evidence for the generation of specific intra- (Tyr23-Tyr20) and inter-molecular (Tyr23-Trp62) Lyso cross-links, and Lyso dimer formation via radical-radical, type 1 mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available