4.7 Review

Recent Advances in Dendritic Macromonomers for Hydrogel Formation and Their Medical Applications

Journal

BIOMACROMOLECULES
Volume 17, Issue 4, Pages 1235-1252

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.6b00004

Keywords

-

Funding

  1. Boston University
  2. National Institute of Health [R01EY13881, R01EB021308]
  3. Coulter Foundation

Ask authors/readers for more resources

Hydrogels represent one of the most important classes of biomaterials and are of interest for various medical applications including wound repair, tissue engineering, and drug release. Hydrogels possess tunable mechanical properties, biocompatibility, nontoxicity, and similarity to natural soft tissues. The need for hydrogels with specific properties, based on the design requirements of the in vitro, in vivo, or clinical application, motivates researchers to develop new synthetic approaches and cross-linking methodologies to form novel hydrogels with unique properties. The use of dendritic macromonomers represents one elegant strategy for the formation of hydrogels with specific properties. Specifically, the uniformity of dendrimers combined with the control of their size, architecture, density, and surface groups make them promising cross-linkers for hydrogel formation. Over the last two decades, a large variety of dendritic-based hydrogels are reported for their potential use in the clinic. This review describes the state of the art with these different dendritic hydrogel formulations including their design requirements, the synthetic routes, the measurement and determination of their properties, the evaluation of their in vitro and in vivo performances, and future perspectives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available