4.7 Article

Mixed matrix membranes incorporated with sonication-assisted ZIF-8 nanofillers for hazardous wastewater treatment

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 26, Issue 35, Pages 35913-35923

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-06698-3

Keywords

Hazardous wastewater; mixed matrix membrane; ZIF-8 nanofillers; Solvent-resistant nanofiltration; Membrane swelling

Funding

  1. Higher Education Commission (HEC), Pakistan [3514]

Ask authors/readers for more resources

Mixed matrix membranes (MMMs) provide a unique pathway to treat hazardous industrial effluents. MMMs containing zeolitic imidazolate framework-8 (ZIF-8) as filler in polydimethoxysilane (PDMS) matrix were synthesized. ZIF-8 was prepared using a modified recipe and characterized by different techniques to evaluate its morphology, thermal stability, surface area, pore volume, and other characteristics. The performance of membranes was evaluated for their application in industrial dye-stuff wastewater treatment and solvent-resistant nanofiltration. The results demonstrated that increase in the percentage of ZIF-8 loading in PDMS led to simultaneous increase in the solvent permeability as well as solute rejection from wastewater. The permeability of MMMs increased up to 32% as compared with neat PDMS membrane. The organic dye rejection was achieved more than 87% with MMMs incorporated with 20% loading of nanofillers. Rejection of MMMs was 22% higher than that of unfilled PDMS membrane due to the effect of reduced polymer swelling and size exclusion of the nanofillers. Membrane swelling tests with toluene and isopropanol demonstrated that nanofiller amount has inverse relation with membrane swelling, which implied that nanofillers were in good interaction with polymer and allowed defect free membranes with higher solute rejections and reduced membrane swelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available