4.8 Article

Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 23, Pages 13767-13775

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b05208

Keywords

-

Funding

  1. Natural Science Foundation of China [41702040, 41830862, 41521001]
  2. China Postdoctoral Science Foundation [1231704]
  3. Natural Science Foundation of Hubei Province, China [2018CFA028]
  4. Program of State Administration of Foreign Experts Affairs & the Ministry of Education of China [B18049]

Ask authors/readers for more resources

Fe(II)-bearing clay minerals are important electron sources for Cr(VI) reduction in subsurface environments. However, it is not clear how iron (oxyhydr)oxides impact Cr(VI) reduction by Fe(II)-bearing clays as the two minerals can coexist in soil and sediment aggregates. This study investigated Cr(VI) reduction in the mixed suspensions of reduced nontronite NAu-2 (rNAu-2) and ferrihydrite (Fe(II)/Cr(VI) = 3:1). When the mineral premixing time increased from 0 to 72 h, Cr(VI) reduction was accelerated prominently in the initial stage, while Cr(VI) sorption was inhibited drastically. Mineral premixing led to electron transfer from structural Fe(II) in rNAu-2 to ferrihydrite with formation of reactive-surface-associated Fe(II), which catalyzed ferrihydrite transformation to lepidocrocite. Reactive-surface-associated Fe(II) accelerated Cr(VI) reduction initially, and ferrihydrite transformation to lepidocrocite was responsible for the inhibited sorption. When the reactive-surface-associated Fe(II) was consumed in the initial stage, the Cr(VI) reduction rate decreased dramatically due to the limitation of slow electron transfer from structural Fe(II) in rNAu-2 to surface-reactive sites. The main reduction sites shifted from rNAu-2 to ferrihydrite/lepidocrocite when rNAu-2 coexisted with ferrihydrite. Our findings demonstrate that electron transfer between minerals has important implications for Cr(VI) and other high-valence contaminant reduction by Fe(II)-bearing clay minerals in subsurface environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available