4.7 Article

Novel methodology for detecting non-ideal operating conditions for grid-connected photovoltaic plants using Internet of Things architecture

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 200, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2019.112078

Keywords

Grid-connected photovoltaic plants; Non-ideal operating conditions; Condition monitoring; Anomaly detection; Shading types

Funding

  1. CAPES
  2. CNPq [420133/2016-0 Universal 01/2016]

Ask authors/readers for more resources

The use of photovoltaic solar power generation is rising as worldwide energy demand increases. Therefore, reliability, safety, life cycle, and improved efficiency of photovoltaic plants have all become a major concern in research nowadays. In this context, monitoring systems are necessary to guarantee the required operating productivity and to avoid overpriced maintenance costs. This paper studies the non-ideal operating conditions for grid-connected photovoltaic plants and proposes an anomaly detection methodology that combines the advantages of the 2-sigma, short-window simple-moving average control charts with shading strength and irradiance transition parameters to detect early deviation in photovoltaic plant operational data. The key aspect of proposed methodology is that it requires neither historical data for model training procedure nor parameters from previous simulation. Only instantaneous meteorological and electrical parameters are required. The efficiency of the condition monitoring methodology has been validated through experimental results conducted in actual operating conditions. Results demonstrated that the proposed methodology is effective to identify non ideal operating conditions for grid-connected photovoltaic plants, i.e., (i) normal operating condition, (ii) natural dynamic shading, (iii) artificial dynamic shading, and (iv) artificial static shading. Moreover, a low-cost and non-invasive intemet-of-things-based embedded architecture is proposed to monitor photovoltaic plant operation in real-time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available