4.7 Article

Energy conversion of urban wastes in China: Insights into potentials and disparities of regional energy and environmental benefits

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 198, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2019.111897

Keywords

Waste; Waste-to-Energy; Physical input-output model; Power generation; Environmental benefits

Funding

  1. National Natural Science Foundation of China [41801199, 41701628]
  2. 111 Project of Jilin University [B16020]
  3. Fundamental Research Funds for the Central Universities [45119031D064]

Ask authors/readers for more resources

With the rapid economic growth and urbanization, China is suffering from serious challenges on energy security and the problems regarding waste treatment and emissions mitigation. Converting urban wastes into energy has been recognized as a promising way to achieve circular economy. In this study, combustible waste, food waste, industrial organic wastewater, and breeding-farm manure are considered to be utilized for energy recovery through waste-to-energy (WtE) technologies. Accordingly, four WtE sectors for power generation are formed and introduced into the socioeconomic activities. A methodological framework is established by combining econometrics, physical input-output model and baseline method of clean development mechanism to evaluate the energy and environmental benefits in China's 31 provincial regions during the period 2016-2025. The results reveal that the regions with more waste generation and power generation are Guangdong (11.82 billion kWh in 2025) and Jiangsu (11.43 billion kWh in 2025). Hebei has the largest accumulative mitigation potentials for the emissions of greenhouse gases, sulfur dioxide, nitrogen oxides, and soot and dust (577.57 Mt carbon dioxide equivalent, 1.79 Mt, 0.89 Mt and 16.22 Mt, respectively), followed by Guangdong and Zhejiang. Less developed regions in northwestern China such as Gansu, Qinghai and Ningxia have less energy recovery and mitigation potentials. Meanwhile, the changes in industrial structure contribute to more mitigations in the sectors of power and heat, coal mining, and oil and gas extraction. The quantification of the energy and environmental benefits and revelation of the features and disparities of waste utilization for energy recovery across regions can provide insights and managerial implications for better policy-making regarding regional waste management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available