4.6 Article

High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte

Journal

ELECTROCHIMICA ACTA
Volume 324, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134874

Keywords

Poly(vinyl alcohol); Supercapacitor; Hydrogel electrolyte; Low-temperature tolerance; Solid-state

Funding

  1. Program for the Natural Science Foundation of Fujian Province [2017J05023]
  2. opening project of state key laboratory of polymer materials engineering (Sichuan University) [sklpme20194-25]

Ask authors/readers for more resources

In this work, the high-performance and flexible solid-state supercapacitors were fabricated based on poly(vinyl alcohol)(PVA)/NaCl/glycerol hydrogel electrolyte and activated carbon electrodes. A novel assembling method was proposed according to the formation properties of PVA/NaCl/glycerol hydrogel electrolyte. PVA/NaCl/glycerol hydrogel electrolyte could be quickly formed in a short time at room temperature. Thus the PVA/NaCl/glycerol solution was coated onto the activated carbon electrodes and the hydrogel electrolyte was in situ formed on the surface of the activated electrodes. Meanwhile, the PVA/NaCl/glycerol hydrogel electrolyte could retain outstanding flexibility and ionic conductivity at a low temperature, which makes the solid-state supercapacitor have excellent low-temperature tolerance. Thus, the electrochemical measurements of the assembled supercapacitor were performed at room temperature and a low temperature of -23 degrees C, respectively. The flexible supercapacitor can show an outstanding flexibility and electrochemical performance at -23 degrees C. Its specific capacitance can remain approximately 81.0% of its initial specific capacitance at room temperature and the capacitance retention could keep 90.5% of the initial capacitance retention at -23 degrees C. It also could be anticipated that this multifunctional flexible supercapacitor with the PVA/NaCl/glycerol hydrogel electrolyte would have broad applications in modern flexible energy storage device. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available