4.6 Article

Numerical simulation of micro-galvanic corrosion of Al alloys: Effect of density of Al(OH)3 precipitate

Journal

ELECTROCHIMICA ACTA
Volume 324, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134847

Keywords

FEM model; Micro-galvanic corrosion; Al(OH)(3) precipitate; Porosity and tortuosity; Steric hindrance effect

Funding

  1. 111 Project [B12012]

Ask authors/readers for more resources

This work is a further step to develop a finite element model to simulate localized corrosion of aluminum alloys driven by micro-galvanic effects. The focus herein is to explore the effect of density (porosity and tortuosity) of Al(OH)(3) precipitates generated both on the electrode surface and in the liquid phase. Two coupled processes are identified and discussed, both influencing the local pH: the Al3+ dissolution from the electrode surface, and the steric hindrance effects on mass transport of species between the bulk solution and the anolyte next to the corroding surface. With the densest precipitate investigated, Al3+ dissolution is more effectively blocked and the mass transport largely hindered of Al3+ ions leaving the electrode surface. With increasing porosity of the precipitate, Al3+ dissolution is enhanced, also the mass transport of species in the electrolyte. The most severe localized acidification inside the occluded volume occurs when the density, namely ascribed by porosity, of precipitate is at an intermediate level with epsilon(c) = 0.01. In qualitative agreement with experimental observations, this work highlights the importance of corrosion product density on the progress of localized corrosion. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available