4.7 Article

Co-metabolic enzymes and pathways of 3-phenoxybenzoic acid degradation by Aspergillus oryzae M-4

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 189, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.109953

Keywords

Co-metabolic enzymes; Pyrethroids; 3-Phenoxybenzoic acid; Biodegradation; Aspergillus oryzae M-4

Funding

  1. National Natural Science Foundation of China [31801644, 31371775]
  2. Specialized Fund for the Experimental Technology and Management Program of Sichuan Normal University of China [SYJS2018001]

Ask authors/readers for more resources

As an intermediate metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA) is more toxic than its parent compounds and has been detected in milk, soil, and human urine. 3-PBA can be metabolized through microbial degradation, but the microbial co-metabolic enzymes and pathways involved in 3-PBA degradation are unclear. This study investigated the enzymes types and possible pathways in the co-metabolic degradation of 3-PBA by Aspergillus oryzae M-4. The enzymes involved in co-metabolic degradation of 3-PBA and its intermediate metabolites were induced, and existed extracellularly and intracellularly except the catechol-degrading enzyme. Inhibitors and inducers of these oxidases were used to examine the enzymes required for co-metabolic degradation of 3-PBA and its intermediate metabolites. 3-PBA is hydroxylated to produce 3-hydroxy-5-phenoxy benzoic acid through the catalytic actions of lignin peroxidase (LiP). Phenol and gallic acid, the metabolites of 3-PBA, are produced via cleavage of an ether bond under the catalytic actions of cytochrome P450 (CYP450) and LiP. Phenol can be converted to catechol by LiP; catechol and gallic acid are cleaved to form long-chain olefin acid or olefin aldehyde by dioxygenase and LiP. In corn flour, some of these enzyme activators such as FeCl3, 4-cumaric acid, veratryl alcohol and sodium periodate appeared to improve 3-PBA degradation. The results provide a reliable pathway and characteristics for co-metabolic microbial degradation of 3-PBA in food and the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available