4.7 Article

Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 189, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.110000

Keywords

Myristica fragrans essential oil; Nanoencapsulation; In vitro release; Antiaflatoxigenic; Safety profile; Lipid peroxidation

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi [09/013(0774)/2018-EMR-I]

Ask authors/readers for more resources

The present study deals with encapsulation of Myristica fragrans essential oil (MFEO) into chitosan nano-matrix, their characterization and assessment of antimicrobial activity, aflatoxin inhibitory potential, safety profiling and in situ efficacy in stored rice as environment friendly effective preservative to control the postharvest losses of food commodities under storage. Surface morphology of MFEO-chitosan nanoemulsion as well as encapsulation of MFEO was confirmed through SEM, FTIR and XRD analysis. In vitro release characteristics with biphasic burst explained controlled volatilization from nanoencapsulated MFEO. Unencapsulated MFEO exhibited fungitoxicity against 15 food borne molds and inhibited aflatoxin B-1 secretion by toxigenic Aspergillus flavus LHP R14 strain. In contrast, nanoencapsulated MFEO showed better fungitoxicity and inhibitory effect on aflatoxin biosynthesis at lower doses. In situ efficacy of unencapsulated and nanoencapsulated MFEO on stored rice seeds exhibited effective protection against fungal infestation, aflatoxin B-1 contamination, and lipid peroxidation. Both the unencapsulated and nanoencapsulated MFEO did not affect the germination of stored rice seeds confirming non-phytotoxic nature. In addition, negligible mammalian toxicity of unencapsulated MFEO (LD50 = 14,289.32 mu L/kg body weight) and MFEO loaded chitosan nanoemulsion (LD50 = 9231.89 mu L/kg body weight) as revealed through favorable safety profile recommend the industrial significance of nanoencapsulated MFEO as an effective green alternative to environmentally hazardous synthetic pesticides for protection of food commodities during storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available