4.7 Article

Outstanding performance of capacitive deionization by a hierarchically porous 3D architectural graphene

Journal

DESALINATION
Volume 468, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.desal.2019.07.009

Keywords

Hierarchical structure; 3D graphene; Microwave-assisted; Brackish water; Capacitive deionization (CDI)

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 105-2221-E-006-015-MY5]

Ask authors/readers for more resources

To attain the optimal capacitive deionization (CDI) performance for brackish water desalination, an electrode should possess high electrical conductivity, large surface area, hierarchically porous carbons with three-dimensional (3D) interconnection which can provide efficient pathways for ion and electron transfer. Herein we demonstrate a novel route to prepare a hierarchically porous 3D architectural graphene by using a combination of microwave treatment and H2O2-assisted hydrothermal method. The physicochemical and electrochemical properties of prepared 3D porous graphene are identified by scanning/transmission electron microscopy, X-ray based spectroscopies, Raman, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impendence spectroscopy. The desalination tests are carried out by using a batch-mode CDI at 1.4 V in a 500 ppm NaCl solution. Experimental results show that 3D porous graphene has a superior specific capacitance (190 Fg(-1)) and ultrahigh electrosorption capacity (21.58 mg g(-1)). This unique hierarchically porous 3D graphene which exhibits good electrical conductivity, efficient ion transport and lower charge transfer resistance could be one of promising electrodes for CDI in the practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available