4.5 Article

An argument for hyperbolic geometry in neural circuits

Journal

CURRENT OPINION IN NEUROBIOLOGY
Volume 58, Issue -, Pages 101-104

Publisher

CURRENT BIOLOGY LTD
DOI: 10.1016/j.conb.2019.07.008

Keywords

-

Categories

Funding

  1. National Science Foundation [IIS-1254123, CRCNS IIS-1724421]
  2. Ideas Lab [IOS-1556388]

Ask authors/readers for more resources

This review connects several lines of research to argue that hyperbolic geometry should be broadly applicable to neural circuits as well as other biological circuits. The reason for this is that networks that conform to hyperbolic geometry are maximally responsive to external and internal perturbations. These networks also allow for efficient communication under conditions where nodes are added or removed. We will argue that one of the signatures of hyperbolic geometry is the celebrated Zipf's law (also sometimes known as the Pareto distribution) that states that the probability to observe a given pattern is inversely related to its rank. Zipf's law is observed in a variety of biological systems - from protein sequences, neural networks to economics. These observations provide further evidence for the ubiquity of networks with an underlying hyperbolic metric structure. Recent studies in neuroscience specifically point to the relevance of a three-dimensional hyperbolic space for neural signaling. The three-dimensional hyperbolic space may confer additional robustness compared to other dimensions. We illustrate how the use of hyperbolic coordinates revealed a novel topographic organization within the olfactory system. The use of such coordinates may facilitate representation of relevant signals elsewhere in the brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available