4.5 Article

Sodium P-Aminosalicylic Acid Improved Manganese-Induced Learning and Memory Dysfunction via Restoring the Ultrastructural Alterations and γ-Aminobutyric Acid Metabolism Imbalance in the Basal Ganglia

Journal

BIOLOGICAL TRACE ELEMENT RESEARCH
Volume 176, Issue 1, Pages 143-153

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12011-016-0802-4

Keywords

Sodium para-aminosalicylic acid; Manganese; gamma-aminobutyric acid (GABA) metabolism; Spatial learning-memory ability impairment; Ultrastructural alterations of basal ganglia

Funding

  1. National Natural Science Foundation of China [NSFC 81072320, 81460505, 30760210]
  2. Guangxi Natural Science Foundation [GXNSFAA 118232, 2015GXNSFAA139181]
  3. Innovation Project of Guangxi Graduate Education

Ask authors/readers for more resources

Excessive intake of manganese (Mn) may cause neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has been used successfully in the treatment of Mn-induced neurotoxicity. The gamma-aminobutyric acid (GABA) is related with learning and memory abilities. However, the mechanism of PAS-Na on improving Mn-induced behavioral deficits is unclear. The current study was aimed to investigate the effects of PAS-Na on Mn-induced behavioral deficits and the involvement of ultrastructural alterations and gamma-aminobutyric acid (GABA) metabolism in the basal ganglia of rats. Sprague-Dawley rats received daily intraperitoneally injections of 15 mg/kg MnCl2.4H(2)O, 5d/week for 4 weeks, followed by a daily back subcutaneously (sc.) dose of PAS-Na (100 and 200 mg/kg), 5 days/week for another 3 or 6 weeks. Mn exposure for 4 weeks and then ceased Mn exposure for 3 or 6 weeks impaired spatial learning and memory abilities, and these effects were long-lasting. Moreover, Mn exposure caused ultrastructural alterations in the basal ganglia expressed as swollen neuronal with increasing the electron density in the protrusions structure and fuzzed the interval of neuropil, together with swollen, focal hyperplasia, and hypertrophy of astrocytes. Additionally, the results also indicated that Mn exposure increased Glu/GABA values as by feedback loops controlling GAT-1, GABA(A) mRNA and GABA(A) protein expression through decreasing GABA transporter 1(GAT-1) and GABA A receptor (GABA(A)) mRNA expression, and increasing GABA(A) protein expression in the basal ganglia. But Mn exposure had no effects on GAT-1 protein expression. PAS-Na treatment for 3 or 6 weeks effectively restored the above-mentioned adverse effects induced by Mn. In conclusion, these findings suggest the involvement of GABA metabolism and ultrastructural alterations of basal ganglia in PAS-Na's protective effects on the spatial learning and memory abilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available