4.7 Article

Sustainable production of reduced graphene oxide using elemental sulfur for multifunctional composites

Journal

COMPOSITES PART B-ENGINEERING
Volume 176, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.107236

Keywords

Sulfur-doping; Reduced graphene oxide; Polyimide; Nanocomposites

Funding

  1. Korea Institute of Science and Technology
  2. Nano Material Technology Development Program through the National Research Foundation (NRF) of Korea - Ministry of Science, ICT and Industrial Fundamental Technology Development Program by the Ministry of Trade, Industry and Energy of Korea [10052838]
  3. Space Core Technology Development Program through the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [NRF-2017M1A3A3A02016310]

Ask authors/readers for more resources

We herein report on a green, facile, and sustainable production of sulfur-doped reduced graphene oxide (S-RGO) and their use in mechanically strong gas barrier polymers. S-RGO was successfully obtained by directly utilizing elemental sulfur in the absence of any organic solvent or catalyst. This method suggests that the sulfur treatment of GO causes the insertion of a variety of sulfur forms such as thiol, thioether, sulfoxide, sulfone, and sulfonic acid at the platelet edges or surfaces. It also restores graphitic networks on the basal planes, enabling easy exfoliation in liquid phases. The resultant S-RGO is highly dispersible in organic solvents and exhibits a high C/O ratio (13.2), excellent electrical conductivity (179 S cm(-1)), and a high Hg removal capacity. The molecular dynamics (MD) simulation supports the discussion on the interfacial mechanics for the solvent-exfoliation of S-RGO. The S-RGO can significantly improve the tensile strength (255 MPa) and Young's modulus (6.2 GPa) of the host polyimide, (PI) even with a 0.5 wt% filler loading. Furthermore, loading S-RGO as a filler in PI films can lead to an exceptional oxygen gas barrier performance, resulting in an approximately 95% reduction (at 3 wt%) compared with that of a pristine PI film. This strategy provides a new, environmentally friendly, and cost-effective reduction methodology for synthesizing high-quality and multifunctional RGOs and their nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available