4.7 Article

3D-printed polymer composites with acoustically assembled multidimensional filler networks for accelerated heat dissipation

Journal

COMPOSITES PART B-ENGINEERING
Volume 174, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.106991

Keywords

Additive manufacturing; Functional polymer composites; Filler network; Composite design; Heat dissipation

Funding

  1. National Science Foundation [1663399]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1663399] Funding Source: National Science Foundation

Ask authors/readers for more resources

Polymer composites containing thermally conductive fillers show great promise in solving the overheating issue which is critical for electronic devices. Recent successes in developing functional polymer composites rely on the excellent filler property and heavy loading. Yet the intensive filler loading leads to challenges in manufacturing and composite properties. This study reports an alternative method for functional particle-polymer composite design and fabrication: instead of heavy loading, a small amount of filler composes highly concentrated multidimensional network functioning as active paths for heat dissipation in the polymer matrix. A novel 3D printing technique named acoustic field-assisted projection stereolithography realizes the fabrication of such composites. The local filler weight ratio in the network is > 7 times of the feedstock filler loading. With the same feedstock, the patterned composite exhibits >10 times higher efficiency in heat dissipation, compared to the uniform composite. With the same amount of fillers embedded, the patterned composite accelerates the heat dissipation twice than the uniform composite. Moreover, 3D filler network outperforms 2D network, showing that the higher network dimension is conducive to multidirectional heat transfer. With a low filler consumption while higher design flexibility, this new composite material design and manufacturing approach overcomes restriction caused by filler loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available