4.7 Article

Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2019.105518

Keywords

3D printing; Polymer-matrix composites (PMCs); Honeycomb; Mechanical properties

Funding

  1. Dalian Science and Technology Innovation Funds, China [2018J11CY007]

Ask authors/readers for more resources

In present work, fiber reinforced thermoplastic composite filaments consisting of polylactic acid, polycaprolactone and basalt fibers for 3D printing are developed and proposed. Mechanical test, dynamic mechanical analysis and rheology test are conducted to capture the mechanical, thermal and viscoelastic properties of 3D-printed PLA-PCL/KBF specimens. Then, circular honeycombs are fabricated using four ratios of filaments via fused deposition modeling technology, and the in-plane compressive mechanical properties are explored. The results show that circular honeycombs manufactured using PLA-PCL30/KBF filament possess superior energy absorption capacity, which is ascribed to the ductility of matrix and good interfacial matrix/fiber adhesion. Furthermore, two other honeycomb structures (hexagonal and re-entrant cell geometries) are fabricated and their compressive mechanical properties are assessed. It is revealed that the hexagonal honeycombs exhibit comparative energy absorption capacity with re-entrant ones. Therefore, the PLA-PCL/KBF composite materials are promising FDM feedstock for manufacturing honeycomb structures as energy absorbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available