4.7 Article

An experimental investigation on low-velocity impact response of novel jute/rubber flexible bio-composite

Journal

COMPOSITE STRUCTURES
Volume 225, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2019.111190

Keywords

Drop weight impact; Flexible composite; Energy absorption; Damage; Coefficient of restitution; Energy loss percentage

Ask authors/readers for more resources

This paper presents an experimental investigation on low velocity impact (LVI) behaviour of flexible bio-composite laminates with different stacking sequence namely jute/rubber/jute (JRJ), jute/rubber/rubber/jute (JRRJ), jute/rubber/jute/rubber/jute (JRJRJ) and subjected to different impact energy levels using a conical shaped impactor. The performances of the proposed flexible composites are evaluated based on their energy absorption, peak force, coefficient of restitution (CoR), energy loss percentage (ELP) and failure behavior. Results indicated that JRJ provides better energy absorption and JRJRJ provides better damage resistance when subjected to LVI. Microscopic analysis revealed that the flexible composites fail mainly due to the tearing mechanism of the matrix as opposed to cracking in case of conventional stiff composites. It was also found that flexible composites are free from delamination. Compared to conventional stiff composites, there is no catastrophic failure observed in the proposed flexible composite. The overall performance evaluation of these proposed flexible composites indicates that these flexible composites can be potential sacrificial materials such as claddings used to protect primary structural components subjected to LVI. The systematic methodology employed in the present study serves as a benchmark for the effective utilization and selection of flexible composites for LVI applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available