4.5 Article

Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System

Journal

COMPLEXITY
Volume 2019, Issue -, Pages -

Publisher

WILEY-HINDAWI
DOI: 10.1155/2019/4308549

Keywords

-

Funding

  1. National Natural Science Foundations of China [61671245, 51777016, 51607013, 61601062]

Ask authors/readers for more resources

In this paper, a four-dimensional (4-D) memristor-based Colpitts system is reaped by employing an ideal memristor to substitute the exponential nonlinear term of original three-dimensional (3-D) Colpitts oscillator model, from which the initials-dependent extreme multistability is exhibited by phase portraits and local basins of attraction. To explore dynamical mechanism, an equivalent 3-D dimensionality reduction model is built using the state variable mapping (SVM) method, which allows the implicit initials of the 4-D memristor-based Colpitts system to be changed into the corresponding explicitly initials-related system parameters of the 3-D dimensionality reduction model. The initials-related equilibria of the 3-D dimensionality reduction model are derived and their initials-related stabilities are discussed, upon which the dynamical mechanism is quantitatively explored. Furthermore, the initials-dependent extreme multistability is depicted by two-parameter plots and the coexistence of infinitely many attractors is demonstrated by phase portraits, which is confirmed by PSIM circuit simulations based on a physical circuit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available