4.7 Article

PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 182, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2019.110362

Keywords

Liposomes; Click chemistry; Drug nanocrystals; PEGylation; Targeted delivery; Scattering

Funding

  1. Australian Research Council (ARC) Centre of Excellence in Bio-Nano Science and Technology (CBNS)
  2. Discovery Early Career Research Award [DE190100531]
  3. National Collaborative Research Infrastructure Strategy (NCRIS)
  4. Australian Institute of Nuclear Science and Engineering (RINSE)
  5. NSF [DMR-0520547]
  6. European Union [654,000]

Ask authors/readers for more resources

Liposomal formulations have important therapeutic applications in anti-cancer treatments but current formulations suffer from serious side effects, high dosage requirements and prolonged treatment. In this study, PEGylated azide-functionalized liposomes containing drug nanocrystals were investigated with the aim of increasing the drug payload and achieving functionalization for targeted delivery. Liposomes were characterized using cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small and ultrasmall angle neutron scattering (SANS/USANS) and small and wide angle X-ray scattering (SAXS/WAXS). Cryo-TEM experiments revealed the dimensions of the nanocrystal-loaded liposomes and the change of shape from spherical to elongated after the formation of nanocrystals. Results from SANS/USANS experiments confirmed the asymmetric particle shape. SAXS/WAXS experiments confirmed that the crystalline drug only occurred in freeze-thawed samples and correlated with a new unidentified polymorphic form of ciprofloxacin. Using a small molecule dye, dibenzocyclooctyne (DBCO)-cy5, specific conjugation between DBCO groups and surface azide groups on the liposomes was confirmed; this indicates the promise of this system for tumour-targeted delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available