4.6 Article

A rhBMP-2-loaded three-dimensional mesoporous bioactive glass nanotubular scaffold prepared from bacterial cellulose

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2019.123838

Keywords

Mesoporous bioactive glass; Nanotube; Scaffold; Growth factor; Bone regeneration

Funding

  1. National Natural Science Foundation of China [51572187, 30660264]

Ask authors/readers for more resources

Although recombinant human bone morphogenetic protein-2 (rhBMP-2) has been widely applied for bone regeneration, finding an ideal delivery system with optimal dose and minimal side effects is still a challenge. In this context, a novel mesoporous bioactive glass nanotubular (MBG-NT) scaffold loaded with rhBMP-2 was developed using a template-assisted sol-gel method. The obtained MBG-NT scaffold showed a notable 3D network structure and the nanotubes had an outer diameter of approximately 45 nm and a wall thickness of 15 nm. X-ray photoelectron spectroscopy (XPS) certified that the rhBMP-2 was successfully loaded into the MBG-NT scaffold with a quantity of 184.3 +/- 5 ng mg(-1), and the MBG-NT scaffold exhibited a sustained release of rhBMP-2 for 28 days due to the presence of mesoporous structures. Moreover, the rhBMP-2-loaded MBG-NT scaffold exhibited enhanced proliferation, alkaline phosphatase (ALP) activity and osteogenic-related gene expression of human bone marrow stromal cells (hBMSCs) when compared to bare MBG-NT scaffold. We believe that the rhBMP-2-loaded MBG-NT scaffold can be a promising scaffold for regeneration of large bone defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available