4.7 Article

The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica, and its impact on its feeding behavior and intestinal histology

Journal

CHEMOSPHERE
Volume 234, Issue -, Pages 123-131

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.05.267

Keywords

Microplastics; Artemia; Uptake; Elimination; Feeding; Epithelia

Funding

  1. National Key Research and Development Program of China [2016YFC1402201]
  2. Scientific Research Special Fund of Marine Public Welfare Industry [201505034]
  3. National Natural Science Foundation of China [51479016]

Ask authors/readers for more resources

Microplastics are a ubiquitous contaminant of marine ecosystems that have received considerable global attention. The effects of microplastic ingestion on some marine biota have been evaluated, but the uptake, elimination, and histopathological impacts of microplastics remain under-investigated especially for zooplankton larvae. Here, we show that 10 mu m polystyrene microspheres can be ingested and egested by Artemia parthenogenetica larvae, which impact their health. The results indicate that A. parthenogenetica larvae have a varying capacity to consume 10 mu m polystyrene microspheres that is dependent on microplastic exposure concentrations, exposure times, and the availability of food. The lowest level of microplastics that was ingested by A. parthenogenetica was 0.15 particles/individual when exposed to 10 particles/mL and 0.05 particles/individual when exposed to 1 particle/mL over 24 h and 14 d, respectively. A. parthenogenetica larvae were able to egest feces with microplastics within 3 h of ingestion. However, ingested microplastics persisted in individuals for up to 14 days. Furthermore, microalgal feeding was significantly reduced by 27.2% in the presence of 10(2) particles/mL microplastics over 24 h. Histological analyses indicated that a greater abundance of lipid droplets was present among epithelia after 24 h of exposure at a concentration of 10 particles/mL. Moreover, intestinal epithelia were deformed and disorderedly arranged after 14 d of exposure. Overall, these results indicate that marine microplastic pollution could pose a threat to A. parthenogenetica health, especially that of larvae. Consequently, further research is required to evaluate the potential physiological and histopathological effects of microplastics for other marine invertebrate species. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available