4.7 Article

Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis

Journal

CHEMOSPHERE
Volume 232, Issue -, Pages 87-95

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.05.210

Keywords

Cobalt; Strontium; Cesium; Forward osmosis; Radioactive wastewater

Funding

  1. National Key Research and Development Program [2016YFC1402507]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13026]

Ask authors/readers for more resources

The removal of Co, Sr and Cs ions form simulated radioactive wastewater using forward osmosis (FO) process was investigated. The effect of various factors on nuclide transport was examined, including membrane orientation, NaCl concentration, flow velocity, and the main factors were identified by correlation analysis. The mechanisms of nuclides transfer through membrane were explored. The results indicated that the active layer facing draw solution (AL-DS) had higher nuclide flux than AL-FS. At AL-FS mode, the highest flux of Co, Sr and Cs were only 1.54, 10.22 and 15.63 mg m(-2) h(-1) respectively by cellulose triacetate with embedded polyester screen support (CTA-ES) membrane. At AL-DS mode, the flux of Co and Cs increased when NaCl concentration and flow velocity increased. Convection, diffusion and electrostatic interactions were found to influence the nuclide transport all together. The Pearson correlation and partial correlation analysis identified that the diffusion coefficient of nuclides and reverse NaCl flux were the most important factors affecting nuclide flux through cellulose triacetate membrane. The water flux, NaCl concentration, flow velocity and partition coefficient were not the main affecting factors for nuclide flux. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available