4.7 Article

Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 385, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123455

Keywords

Asymmetric supercapacitors; Energy density; Freestanding; Hierarchical; Copper-cobalt selenide

Funding

  1. Basic Research Program [2019R1A2C1004983]
  2. Ministry of Science and ICT of Republic of Korea [2019R1A5A8080326]

Ask authors/readers for more resources

Transition-metal chalcogenides (TMCs) have attracted numerous interests in the field of energy storage owing to their exceptional electrical conductivity, ultrahigh specific capacity, etc. Herein, with inspiration from the attractive nanostructures of hierarchical frameworks with interconnected networks, we endeavored to design ternary copper cobalt selenide (CuxCo1-xSe2) nanostructures through a facile and cost-effective hydrothermal and followed by selenization process. The effects of Cu2+ is investigated and shows significant enhancement in the electrochemical performances. The optimal Cu0.5Co0.5Se2 nanosheets (NSs) possess hierarchical architectures, large specific surface area, unique porous networks, and excellent intrinsic conductivity that result in superior electrochemical properties by their excellent synergistic effects. Taking advantage of the merits of the rational nanostructures, the Cu0.5Co0.5Se2 NSs significantly boost the capacitive performances as ultrahigh specific capacitance of similar to 1695 F g(-1) at a current density of 1 A g(-1), and long-term cycling stability (similar to 94.9%). An asymmetric supercapacitor (ASC) device is fabricated using the Cu0.5Co0.5Se2 NSs as a positive electrode, and multilayered MXene (Ti3C2) as a negative electrode. Remarkably, the ASC operates at a working potential of 1.6 V and delivers a high energy density (similar to 84.17 Wh kg(-1) at 0.604 kW kg(-1)), high power density (similar to 14.95 kW kg(-1) at 57.73 Wh kg(-1)), and exceptional cycling stability (similar to 91.1% after 10,000 charge-discharge cycles). The energy-storage properties are superior to recently reported TMCs-based ASC, proposing that the Cu0.5Co0.5Se2//MXene ASC has massive potential for next-generation energy-storage systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available