4.8 Article

Comparing pore structure models of nanoporous carbons obtained from small angle X-ray scattering and gas adsorption

Journal

CARBON
Volume 152, Issue -, Pages 416-423

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.06.008

Keywords

-

Funding

  1. Austrian Klima-und Energiefonds via the FFG program 'Energieforschung' (Project: Hybrid Supercap)
  2. German Federal Ministry of Education and Research (BMBF) [FKZ 03SF0498]

Ask authors/readers for more resources

The performance of nanoporous carbons, used for hydrogen storage, ionic charge storage, or selective gas separation, is strongly determined by their pore shape and size distribution. Two frequently used experimental techniques to characterize the nanopore structure of carbons are gas adsorption combined with quenched-solid density functional theory and small angle X-ray scattering. However, neither of the two techniques can unambiguously derive a valid pore model for disordered pore structures without making assumptions. Here, we quantitatively compare pore size distributions from X-ray scattering and gas adsorption data. We generate three-dimensional pore models of activated carbons using small angle scattering and the concept of Gaussian Random Fields. These pore models are used to generate pore size distributions inherently containing a slit-pore assumption, making them comparable to pore size distributions obtained from gas adsorption analysis. This is realized by probing the effective adsorption potential via sampling of the three-dimensional pore structure with a probing adsorbate and calculating a Degree of Confinement parameter accounting for local pore geometry effects. We also generate pore size distributions with an alternative definition of pore size and discuss intricacies of gas adsorption results, such as the dependence on the underlying pore model in disordered microporous carbons. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available