4.7 Article

Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels

Journal

CARBOHYDRATE POLYMERS
Volume 224, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2019.115147

Keywords

Tannic acid; Cellulose nanofibrils; Hydrogel; Antioxidant; Antibacterial

Funding

  1. National Natural Science Foundation of China [51673072]

Ask authors/readers for more resources

Here, we designed a self-healing composite hydrogel with antioxidant and antibacterial activities by using cellulose nanofibrils (CNF) and tannic acid (TA) as functional additives. Excellent mechanical stability, moldability, stretchability and rapid self-healing ability without any external intervention were realized in one system due to the combined dynamic borate ester bonding between polyvinyl alcohol-borax (PB) and mull-hydrogen bonding between different components. The rheological measurements indicated the incorporation of CNF and TA to PB system substantially affected the viscoelasticity of hydrogels. The unique antioxidant and antibacterial properties were achieved due to the complexation of TA. These high performance multifunctional hydrogels opens a window for a broad application in the field of smart devices and surface engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available