4.7 Article

Exosomal transfer of miR-126 promotes the anti-tumour response in malignant mesothelioma: Role of miR-126 in cancer-stroma communication

Journal

CANCER LETTERS
Volume 463, Issue -, Pages 27-36

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.canlet.2019.08.001

Keywords

Malignant mesothelioma; miR-126; Exosomes; Cancer stroma; miRNA-based therapy

Categories

Funding

  1. Region Friuli Venezia Giulia (Italy) [0016902/P]
  2. Czech Health Research Council grant [16-31704A]

Ask authors/readers for more resources

MiR-126 has been shown to suppress malignant mesothelioma (MM) by targeting cancer-related genes without inducing toxicity or histopathological changes. Exosomes provide the opportunity to deliver therapeutic cargo to cancer stroma. Here, a tumour stromal model composed of endothelial cells (HUVECs), fibroblasts (IMR-90 cells), non-malignant mesothelial cells (Met-5A cells) and MM cells (H28 and MM-B1 cells) was used. The cells were treated with exosomes from HUVECs carrying endogenous (exo-HUVEC) and enriched miR-126 (exo-HUVECmiR-126), and the uptake/turnover of exosomes; miR-126 distribution within the stroma; and effect of miR-126 on cell signalling, angiogenesis and cell proliferation were evaluated. Based on the sensitivity of MM cells to exo-HUVEC miR-126 treatment, miR-126 was distributed differently across stromal cells. The reduced miR-126 content in fibroblasts in favour of endothelial cells reduced angiogenesis and suppressed cell growth in an miR-126-sensitive environment. Conversely, the accumulation of miR-126 in fibroblasts and the reduced level of miR-126 in endothelial cells induced tube formation in an miR-126-resistant environment via VEGF/EGFL7 upregulation and IRS1-mediated cell proliferation. These findings suggest that transfer of miR-126 via HUVEC-derived exosomes represents a novel strategy to inhibit angiogenesis and cell growth in MM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available