4.3 Article

Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress

Journal

BIOLOGICAL & PHARMACEUTICAL BULLETIN
Volume 39, Issue 8, Pages 1300-1308

Publisher

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/bpb.b16-00094

Keywords

diabetic nephropathy; podocyte; oxidative stress; reactive oxygen species

Funding

  1. Innovation Program of Shanghai Municipal Education Commission [14ZZ118]
  2. Leading Academic Discipline Project of State Administration of Traditional Chinese Medicine of China, Talent Project of Integrative Medicine of Shanghai Municipal Health Bureau [ZYSNXD012-RC-ZXY]
  3. Key Medical Discipline Project of Shanghai Municipal Health Bureau [ZK2012A34]
  4. National Natural Science Foundation of China [81400728, 81473480]

Ask authors/readers for more resources

Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available