4.6 Article

The descending motor tracts are different in dancers and musicians

Journal

BRAIN STRUCTURE & FUNCTION
Volume 224, Issue 9, Pages 3229-3246

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00429-019-01963-0

Keywords

Neuroplasticity; Motor training; Probabilistic tractography; Descending motor pathways or corticospinal tract or pyramidal tracts; White matter; Dance and music

Funding

  1. Natural Sciences and Engineering Council of Canada (NSERC) [238670]

Ask authors/readers for more resources

Long-term motor training, such as dance or gymnastics, has been associated with increased diffusivity and reduced fiber coherence in regions including the corticospinal tract. Comparisons between different types of motor experts suggest that experience might result in specific structural changes related to the trained effectors (e.g., hands or feet). However, previous studies have not segregated the descending motor pathways from different body-part representations in motor cortex (M1). Further, most previous diffusion tensor imaging studies used whole-brain analyses based on a single tensor, which provide poor information about regions where multiple white matter (WM) tracts cross. Here, we used multi-tensor probabilistic tractography to investigate the specific components of the descending motor pathways in well-matched groups of dancers, musicians and controls. To this aim, we developed a procedure to identify the WM regions below the motor representations of the head, hand, trunk and leg that served as seeds for tractography. Dancers showed increased radial diffusivity (RD) in comparison with musicians, in descending motor pathways from all the regions, particularly in the right hemisphere, whereas musicians had increased fractional anisotropy (FA) in the hand and the trunk/arm motor tracts. Further, dancers showed larger volumes compared to both other groups. Finally, we found negative correlations between RD and FA with the age of start of dance or music training, respectively, and between RD and performance on a melody task, and positive correlations between RD and volume with performance on a whole-body dance task. These findings suggest that different types of training might have different effects on brain structure, likely because dancers must coordinate movements of the entire body, whereas musicians focus on fewer effectors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available