4.7 Article

Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences

Journal

BIOINFORMATICS
Volume 32, Issue 14, Pages 2103-2110

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btw152

Keywords

-

Funding

  1. NHGRI [U54HG003037]
  2. NIH [GM100233]

Ask authors/readers for more resources

Motivation: Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore technologies (ONT) produce reads over 10 kb in length, which have enabled high-quality genome assembly at an affordable cost. However, at present, long reads have an error rate as high as 10-15%. Complex and computationally intensive pipelines are required to assemble such reads. Results: We present a new mapper, minimap and a de novo assembler, miniasm, for efficiently mapping and assembling SMRT and ONT reads without an error correction stage. They can often assemble a sequencing run of bacterial data into a single contig in a few minutes, and assemble 45-fold Caenorhabditis elegans data in 9 min, orders of magnitude faster than the existing pipelines, though the consensus sequence error rate is as high as raw reads. We also introduce a pairwise read mapping format and a graphical fragment assembly format, and demonstrate the interoperability between ours and current tools. Availability and implementation: https://github.com/lh3/minimap and https://github.com/lh3/miniasm

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available