4.8 Article

Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor

Journal

BIOSENSORS & BIOELECTRONICS
Volume 142, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2019.111525

Keywords

Pt-Sn@TiO2 composite; Oxygen reduction reaction; Electrochemical aptasensor; RecJ(f) exonuclease; Streptomycin

Funding

  1. National Natural Science Projects of China - Chinese National Natural Science Foundation [U1504215, 21576071, 21776061]
  2. International Science and Technology Cooperation Project - Department of Science and Technology of Henan Province, China [172102410042]
  3. Education Department of Henan Province [19HASTIT037, 19IRTSTHN029]

Ask authors/readers for more resources

In this work, a metallic composite with strong electrocatalytic property was designed by uniformly decorating Pt and Sn nanoparticles on the surface of TiO2 nanorods (Pt-Sn@TiO2). A detection scheme was then developed based on a dual signal amplification strategy involving the Pt-Sn@TiO2 composite and exonuclease assisted target recycling. The Pt-Sn@TiO2 composite exhibited an enhanced oxygen reduction current owing to the synergistic effect between Pt and Sn, as well as high exposure of Pt (111) crystal face. Initially, a Pt-Sn@TiO2 modified glassy carbon electrode produced an amplified electrochemical signal for the reduction of dissolved oxygen in the analyte solution. Next, a DNA with a complementary sequence to a streptomycin aptamer (cDNA) was immobilised on the Pt-Sn@TiO2 modified electrode, followed by the streptomycin aptamer that hybridised with cDNA. The corresponding oxygen reduction current was diminished by 51% attributable to the hindrance from the biomolecules. After a mixture of streptomycin and RecJ(f )exonuclease was introduced, both the streptomycin-aptamer complex and the cDNA were cleaved from the electrode, making the Pt-Sn and Pt (111) surface available for oxygen reduction. RecJ(f) would also release streptomycin from the streptomycin-aptamer complex, allowing it to complex again with aptamers on the electrode. This has then promoted a cyclic amplification of the oxygen reduction current by 85%, which is quantitatively related to streptomycin. Under optimal conditions, the aptasensor exhibited a linear range of 0.05-1500 nM and a limit of detection of 0.02 +/- 0.0045 nM streptomycin. The sensor was then used in the real-life sample detection of streptomycin to demonstrate its potential applications to bioanalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available