4.8 Article

Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process

Journal

BIOSENSORS & BIOELECTRONICS
Volume 142, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2019.111496

Keywords

Lamb wave; Molecular diagnosis; Gene amplification; DNA hydrogel; Acoustic streaming

Funding

  1. government-wide R&D fund project for infectious disease research [HG18C0012]

Ask authors/readers for more resources

Recent developments in microfluidics enable the lab-on-a-chip-based molecular diagnosis. Rapid and accurate diagnosis of infectious diseases is critical for preventing the transmission of the disease. Here, we characterize a Lamb wave-based device using various parameters including the contact angle and viscosity of the sample droplet, the applied voltage, and the temperature increase. Additionally, we demonstrate the functionality of the Lamb wave-based device in clinical application. Optimal temperature for rolling circle amplification (RCA) process is 30 degrees C, and it was achieved by Lamb wave generation at 17 V. Gene amplification due to RCA process could be detected by viscosity increase due to DNA hydrogel formation in a sample droplet, which induced the acoustic streaming velocity of suspended particles to be decreased. In our Lamb wave-based device, isothermal amplification of target nucleic acids could be successfully detected within 30 min using 10 mu L of sessile droplet, and was validated by comparing that of commercial real-time fluorescence analysis. Our device enables simple and low-cost molecular diagnosis, which can be applied to resource-limited clinical settings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available