4.8 Article

Long-term effects of copper nanoparticles on granule-based denitrification systems: Performance, microbial communities, functional genes and sludge properties

Journal

BIORESOURCE TECHNOLOGY
Volume 289, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2019.121707

Keywords

Granule-based denitrification system; Cu nanoparticles; Microbial community; Denitrifying functional genes

Funding

  1. Natural Science Foundation of China [51578204, 51878231]
  2. Science and Technology Development Program of Hangzhou [20160533B77]

Ask authors/readers for more resources

The widespread use of copper nanoparticles (CuNPs) has attracted increasing concern because of their potential effects on biological wastewater treatment. However, their effect on granule-based denitrification systems is unclear. Hence, the effects of CuNPs on denitrifying granules were investigated during long-term operation. The results showed that 51.9% of nitrogen removal capacity was lost after exposure to 5 mg L-1 CuNPs, with the amount of Cu(II) gradually increasing with elevating CuNP levels. Moreover, the relative abundance of denitrifying bacteria (Castellaniella) and denitrifying functional genes (nirK, napA, narG and nosZ) obviously decreased. Meanwhile, the specific denitrification activity, the content of extracellular polymeric substances and dehydrogenase activity decreased by 44.0%, 15.2% and 99.9%, respectively, compared to their values in the initial sludge. Considering the downtrend in the abundance of copper resistance genes, it was deduced that the toxicity of CuNPs was mainly or at least partially due to the release of Cu(II).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available