4.7 Article

New therapeutic strategies for IPF: Based on the phagocytosis-secretion-immunization network regulation mechanism of pulmonary macrophages

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 118, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2019.109230

Keywords

Pulmonary fibrosis; Macrophages; Network regulation; Traditional Chinese medicines

Funding

  1. Natural Science Foundation of China [81373887]

Ask authors/readers for more resources

Pulmonary fibrosis is a chronic and progressive interstitial lung disease of known and unknown etiology. Over the past decades, macrophages have been recognized to play a significant role in IPF pathogenesis. According to their anatomical loci, macrophages can be divided to alveolar macrophages (AMs) subtypes and interstitial macrophages subtypes (IMs) with different responsibility in the damage defense response. Depending on diverse chemokines and cytokines in local microenvironments, macrophages can be induced and polarized to either classically activated (M1) or alternatively activated (M2) phenotypes in different stages of immunity. Therefore, we hypothesize that there is a phagocytosis-secretion-immunization network regulation of pulmonary macrophages related to a number of chemokines and cytokines. In this paper, we summarize and discuss the role of chemokines and cytokines involved in the phagocytosis-secretion-immunization network regulation mechanism of pulmonary macrophages, pointing toward novel therapeutic approaches based on the network target regulation in the field. Therapeutic strategies focused on modifying the chemokines, cytokines and the network are promising for the pharmacotherapy of IPF. Some Traditional Chinese medicines may have more superiorities in delaying the progression of pulmonary fibrosis for their multi-target activities of this network regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available