4.7 Article

Marcromolecular Architecture and Encapsulation of the Anticancer Drug Everolimus Control the Self-Assembly of Amphiphilic Polypeptide-Containing Hybrids

Journal

BIOMACROMOLECULES
Volume 20, Issue 12, Pages 4546-4562

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.9b01331

Keywords

-

Funding

  1. European Union
  2. Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH-CREATE-INNOVATE (Acronym: LIPODOX) [T1EDK-01833]

Ask authors/readers for more resources

Macromolecular architecture plays an important role in the self-assembly process of block copolymer amphiphiles. Herein, two series of stimuli-responsive amphiphilic 3-miktoarm star hybrid terpolypeptides and their corresponding linear analogues were synthesized exhibiting the same overall composition and molecular weight but different macromolecular architecture. The macro molecular architecture was found to be a key parameter in defining the morphology of the nanostructures formed in aqueous solutions as well as to alter the self-assembly behavior of the polymers independently of their composition. In addition, it was found that the assemblies prepared from the star-shaped polymers showed superior tolerance against enzymatic degradation due to the increased corona block density on the outer surface of the nanoparticles. Encapsulation of the hydrophobic anticancer drug Everolimus resulted in the formation of intriguing non-spherical and non-symmetric pH responsive nanostructures, such as stomatocytes and multi-compartmentalized suprapolymersomes, while the pH-triggered release of the drug was also investigated. Owing to the similarities of the developed stomatocytes with red blood cells, in combination with their pH-responsiveness and superior stability over enzymatic degradation, they are expected to present advanced drug delivery properties and have the ability to bypass several extra- and intracellular barriers to reach and effectively treat cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available