4.6 Article

Biochemical thresholds for pathological presentation of ATP synthase deficiencies

Journal

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Volume 521, Issue 4, Pages 1036-1041

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.11.033

Keywords

ATP synthase; Deficiency; Reactive oxygen species; Oxidative phosphorylation; Threshold effect

Funding

  1. Grant Agency of the Czech Republic [16-01813S]
  2. Ministry of Health of the Czech Republic [16-33018A]
  3. ERDF project MitEnAl [CZ.2.16/3.1.00/21531]

Ask authors/readers for more resources

Mitochondrial ATP synthase is responsible for production of the majority of cellular ATP. Disorders of ATP synthase in humans can be caused by numerous mutations in both structural subunits and specific assembly factors. They are associated with variable pathogenicity and clinical phenotypes ranging from mild to the most severe mitochondrial diseases. To shed light on primary/pivotal functional consequences of ATP synthase deficiency, we explored human HEK 293 cells with a varying content of fully assembled ATP synthase, selectively downregulated to 15-80% of controls by the knockdown of F-1 subunits gamma, delta and epsilon. Examination of cellular respiration and glycolytic flux revealed that enhanced glycolysis compensates for insufficient mitochondrial ATP production while reduced dissipation of mitochondrial membrane potential leads to elevated ROS production. Both insufficient energy provision and increased oxidative stress contribute to the resulting pathological phenotype. The threshold for manifestation of the ATP synthase defect and subsequent metabolic remodelling equals to 10-30% of residual ATP synthase activity. The metabolic adaptations are not able to sustain proliferation in a galactose medium, although sufficient under glucose-rich conditions. As metabolic alterations occur when the content of ATP synthase drops below 30%, some milder ATP synthase defects may not necessarily manifest with a mitochondrial disease phenotype, as long as the threshold level is not exceeded. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available