4.6 Article

RSL3 induced autophagic death in glioma cells via causing glycolysis dysfunction

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.08.096

Keywords

RSL3; Autophagy; Glycolysis dysfunction; Glioma

Funding

  1. National Natural Science Foundation of China [81372697, 81772669]
  2. Scientific Research Foundation of Jilin province [20160101127JC, 20190701051GH]

Ask authors/readers for more resources

RSL3 is a type of small molecular compound which can inactivate glutathione peroxidase 4 (GPX4) and induce ferroptosis, but its role in glioma cell death remains unclear. In this study, we found RSL3 inhibited the viabilities of glioma cells and induced glioma cell death in a dose-dependent manner. In vitro studies revealed that RSL3-induced cell death was accompanied with the changes of autophagy-associated protein levels and was alleviated by pretreatment of 3-Methyladenine, bafilomycin Al and knockdown of ATG5 with siRNA. The ATP and pyruvate content as well as the protein levels of HKII, PFKP, PKM2 were decreased in cells treated by RSL3, indicating that RSL3 induced glycolysis dysfunction in glioma cells. Moreover, supplement of exterior sodium pyruvate, which was a final product of glycolysis, not only inhibited the changes of autophagy-associated protein levels caused by RSL3, but also prevented RSL3-induced cell death. In vivo data suggested that the inhibitory effect of RSL3 on the growth of glioma cells was associated with glycolysis dysfunction and autophagy activation. Taken together, RSL3 induced autophagic cell death in glioma cells via causing glycolysis dysfunction. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available