4.6 Article

Simulated rainfall on agricultural soil reveals enzymatic regulation of short-term nitrous oxide profiles in soil gas and emissions from the surface

Journal

BIOGEOCHEMISTRY
Volume 128, Issue 3, Pages 327-338

Publisher

SPRINGER
DOI: 10.1007/s10533-016-0210-z

Keywords

Denitrification; Soil gas; Enzyme activity function; Pre-synthesized enzymes

Funding

  1. Michigan Technological University
  2. Argonne National Laboratory
  3. Atmospheric Sciences Program

Ask authors/readers for more resources

Many microbial species use nitrate to support respiration under oxygen limiting conditions via the process of denitrification, which generates the gaseous products nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N-2). Denitrifying bacteria reduce NO to N2O, which is a potent greenhouse gas, to maintain intercellular concentrations below cytotoxic levels. The enzymes that reduce N2O to N-2 play a crucial role in restricting N2O emissions from the surface. Laboratory studies have demonstrated that accumulation of N2O results from unbalanced rates of the sequence of denitrification reactions, which is ascribed to enzyme kinetics and sequential gene expression. However, the same enzymatic regulation of N2O accumulation in soil during short periods of anoxia has not been observed in the field. Here, we investigated the role of enzymatic regulation on the accumulation of N2O during a transition from oxic to anoxic conditions that was induced by a simulated rainfall in the field. Distinct regulation regimes for activities of pre- and de novo synthesized denitrification enzymes were observed. The activity of N2O reductase played a crucial role in regulating N2O emissions. Dynamics of N2O mixing ratios in soil gas and emissions from the surface were in excellent agreement with simulations using a one-dimensional, diffusion-reaction equation with explicit representations of denitrification enzyme kinetics. A more explicit representation of the regulatory biology of denitrification in current biogeochemical models, like the approach developed in the subject study, is a promising strategy for improving predictions of episodic emissions of N2O from soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available