4.7 Article

Different formation mechanisms of PAH during wood and coal combustion under different temperatures

Journal

ATMOSPHERIC ENVIRONMENT
Volume 222, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2019.117084

Keywords

PAH; Size distribution; Residential solid fuel combustion; Fuel type; Temperature; Formation mechanism

Funding

  1. National Natural Science Foundation of China [91744203, 41761134083, 41877371, 41473091]

Ask authors/readers for more resources

Residential solid fuel combustion (RSFC) is a major contributor to polycyclic aromatic hydrocarbons (PAHs) in the atmosphere, which are strongly related to negative health impacts. During RSFC, the variations of PAH emission factors (EFs) and size-resolved profiles are known to be highly affected by fuel type and combustion temperature. In this study, to investigate the behavior of emitted PAH, combustion experiments were performed using three wood and three coal types under different temperatures (500 degrees C and 800 degrees C) in a quartz tube furnace. The results show that the average EFs of PAH (17-EPA-PAHs) from low temperature coal combustion were nearly three times higher than those from low temperature wood combustion. However, with high temperature, PAH emissions from wood combustion increased two-fold and that from coal combustion decreased by two orders. Furthermore, And the proportion of high-molecular-weight PM-is (HPAHs) increased with increasing temperature in wood combustion, but decreased in coal combustion. This indicates that PAH synthesis was the dominant process during wood combustion, while pyrolysis of coal supramolecular structure was the main formation pathway of PAH during coal combustion. In addition, more low-molecular-weight PAHs (LPAHs) were emitted, with 0.006 mu m-0.050 mu m and 0.223 mu m(-1) mu m particles in the early burning stage, while more HPAHs were emitted in the later burning stage, with larger particles in the size range of 0.050 mu m-0.223 mu m. This means that the PAH formations were different during each burning stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available