4.7 Article

Chaos in a nonautonomous eco-epidemiological model with delay

Journal

APPLIED MATHEMATICAL MODELLING
Volume 79, Issue -, Pages 865-880

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2019.11.006

Keywords

Eco-epidemiology; Seasonal forcing; Incubation delay; Positive periodic solution; Global stability; Chaos

Funding

  1. Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia [KEP-MSc-17-130-38]
  2. DSR

Ask authors/readers for more resources

In this paper, we propose and analyze a nonautonomous predator-prey model with disease in prey, and a discrete time delay for the incubation period in disease transmission. Employing the theory of differential inequalities, we find sufficient conditions for the permanence of the system. Further, we use Lyapunov's functional method to obtain sufficient conditions for global asymptotic stability of the system. We observe that the permanence of the system is unaffected due to presence of incubation delay. However, incubation delay affects the global stability of the positive periodic solution of the system. To reinforce the analytical results and to get more insight into the system's behavior, we perform some numerical simulations of the autonomous and nonautonomous systems with and without time delay. We observe that for the gradual increase in the magnitude of incubation delay, the autonomous system develops limit cycle oscillation through a Hopf-bifurcation while the corresponding nonautonomous system shows chaotic dynamics through quasiperiodic oscillations. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to confirm the chaotic behavior of the system. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available