4.8 Article

Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis

Journal

APPLIED ENERGY
Volume 254, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113629

Keywords

Biomethanation; Anaerobic digestion; Food waste; Hydrogen injection; Hydrogenotrophic methanogenesis

Funding

  1. University of Leeds, United Kingdom

Ask authors/readers for more resources

Anaerobic digestion of food waste is usually impacted by high levels of VFAs, resulting in low pH and inhibited methane production from acetate (acetoclastic methanogenesis); however, this could be harnessed for improving methane production via hydrogenotrophic methanogenesis (biomethanation). In this study, batch anaerobic digestion of food waste was conducted to enhance biomethanation by supplying hydrogen gas (H-2), using a gas mixture of 5%-H-2 and 95%-N-2. The addition of H-2 influenced a temporal microbial shift in substrate utilisation from dissolved organic nutrients to H-2 and CO2 and was perceived to have enhanced the hydrogenotrophic methanogenic activity. As a result, with the release of hydrogen as degradation progressed (secondary fermentation) hydrogenotrophic methanogenesis was further enriched. This resulted in an enhancement of the upgrading of the biogas, with a 12.1% increase in biomethane (from 417.6 to 468.3 NmL-CH4/gVS(added)) and 38.9% reduction in CO2 (from 227.1 to 138.7 NmL-CO2/gVS(added)). Furthermore, the availability of hydrogen gas at the start of the process promoted faster propionate degradation, by the enhanced activity of the H-2-utilisers, thereby, reducing likely propionate-induced inhibitions. The high level of acidification from VFAs production helped to prevent excessive pH increases from the enhanced hydrogenotrophic methanogenic activity. Therefore, it was found that the addition of hydrogen gas to AD reactors treating food waste showed great potential for enhanced methane yield and biogas upgrade, supported by VFAs-induced pH buffer. This creates the possibility to optimise hydrogenotrophic methanogenesis towards obtaining biogas of the right quality for injection into the gas grid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available