4.8 Article

Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 268, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2019.118429

Keywords

Kraft lignin; Synergistic catalyst; Lignin degradation; Liquid fuels

Funding

  1. National Natural Science Foundation of China [51676178]
  2. Chinese Academy of Sciences [XDA 21060101]
  3. National Key Technology R&D Program of China [2018YFB1501600]
  4. Science and Technological Fund of Anhui Province for Outstanding Youth [1508085J01]

Ask authors/readers for more resources

Kraft lignin depolymerization to liquid fuels with high yields is crucial to the comprehensive achievement of sustainable and economic feasibility. Herein, we prepared a bimetallic Co-Zn/Off-Al H-beta catalyst through a two-step post synthesis method composed of dealumination and metal incorporation. The bifunctional Co-Zn/ Off-Al H-beta catalyst efficiently converted Kraft lignin to liquid fuels, which was attributable to the synergistic effect of Co hydrogen binding sites and Zn Lewis acid sites on H-beta support. Catalytic hydrogenation with Co:Zn = 1:3/Off-Al H-beta catalyst at 320 degrees C for 24 h gave the highest yield of petroleum ether soluble product (81%, mainly monomers and dimers). Under these conditions, the liquefied lignin gave a higher heating value of 33.3 MJ/kg, which is a significant increase from 26.0 MJ/kg of Kraft lignin. The catalyst stability test showed excellent recyclability. This work provides a paradigm of improving lignin depolymerization efficiency via the combined use of Lewis acid and hydrogenation catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available