4.7 Article

Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy

Journal

AGRICULTURAL AND FOREST METEOROLOGY
Volume 278, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.agrformet.2019.107655

Keywords

Biodiversity; Ecosystem functioning; Functional diversity; Canopy structure; Light interception; UAV; Photogrammetry

Funding

  1. McGill University
  2. NSERC Partnership Engage Grants (Canada)
  3. University of Helsinki (Finland)

Ask authors/readers for more resources

Biodiversity affects ecosystem functioning in forests by, for example, enhancing growth and altering the forest structure towards greater complexity with cascading effects on other processes and trophic levels. Complexity in forest canopy could enhance light interception and form a link between diversity and productivity in polyculture forests, but the effect of canopy structure on light interception is rarely directly measured. We modelled the canopy surface structure of a tree diversity experiment by photographing it using unmanned aerial vehicle (UAV) and combining the photos into a digital elevation model with photogrammetry tools. We analysed the effects of tree diversity and functional diversity on canopy structural complexity and light interception with a structural equation model. Our results show that: a) increased structural complexity of the canopy reduces light interception, whereas b) tree diversity increases the structural complexity of the canopy, and has a dual impact on light interception. Tree diversity decreased light interception through the structural complexity of the canopy but increased it probably through canopy packing and crown complementarity. However, the effects of both tree diversity and structural complexity of canopy were smaller than the effect of the functional identities of the tree species, especially the differences between deciduous and evergreen trees. We conclude that more complexity in canopy structure can be gained through increased tree diversity, but complex canopy structure does not increase light interception in young forests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available