4.6 Article

High body mass index, brain metabolism and connectivity: an unfavorable effect in elderly females

Journal

AGING-US
Volume 11, Issue 19, Pages 8573-8586

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/aging.102347

Keywords

body mass index; connectivity; PET; brain; gender

Funding

  1. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  2. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  3. National Institute on Aging
  4. National Institute of Biomedical Imaging and Bioengineering
  5. AbbVie
  6. Alzheimer's Association
  7. Alzheimer's Drug Discovery Foundation
  8. Araclon Biotech
  9. BioClinica, Inc.
  10. Biogen
  11. Bristol-Myers Squibb Company
  12. CereSpir, Inc.
  13. Cogstate
  14. Eisai Inc.
  15. Elan Pharmaceuticals, Inc.
  16. Eli Lilly and Company
  17. EuroImmun
  18. F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
  19. Fujirebio
  20. GE Healthcare
  21. IXICO Ltd.
  22. Janssen Alzheimer Immunotherapy Research and Development, LLC.
  23. Johnson and Johnson Pharmaceutical Research and Development LLC.
  24. Lumosity
  25. Lundbeck
  26. Merck and Co., Inc.
  27. Meso Scale Diagnostics, LLC.
  28. NeuroRx Research
  29. Neurotrack Technologies
  30. Novartis Pharmaceuticals Corporation
  31. Pfizer Inc.
  32. Piramal Imaging
  33. Servier
  34. Takeda Pharmaceutical Company
  35. Transition Therapeutics
  36. Canadian Institutes of Health Research

Ask authors/readers for more resources

There are reported gender differences in brain connectivity associated with obesity. In the elderlies, the neural endophenotypes of obesity are yet to be elucidated. We aim at exploring the brain metabolic and connectivity correlates to different BMI levels in elderly individuals, taking into account gender as variable of interest. We evaluated the association between BMI, brain metabolism and connectivity, in elderly females and males, by retrospectively collecting a large cohort of healthy elderly subjects (N=222; age=74.03 +/- 5.88 [61.2-85.9] years; M/F=115/107; BMI=27.00 +/- 4.02 [19.21-38.79] kg/m(2)). Subjects underwent positron emission tomography with [18F]FDG. We found that, in females, high BMI was associated with increased brain metabolism in the orbitofrontal cortex (R=0.44; p<0.001). A significant BMI-by-gender interaction was present (F=7.024, p=0.009). We also revealed an altered connectivity seeding from these orbitofrontal regions, namely expressing as a decreased connectivity in crucial control/decision making circuits, and as an abnormally elevated connectivity in reward circuits, only in females. Our findings support a link between high BMI and altered brain metabolism and neural connectivity, only in elderly females. These findings indicate a strong gender effect of high BMI and obesity that brings to considerations for medical practice and health policy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available