4.7 Article

Segregation pattern of binary-size mixtures in a double-walled rotating drum

Journal

ADVANCED POWDER TECHNOLOGY
Volume 31, Issue 1, Pages 94-103

Publisher

ELSEVIER
DOI: 10.1016/j.apt.2019.10.003

Keywords

Rotating drum; Rotation speed; Segregation pattern; Granular temperature

Funding

  1. National Science Council of the R.O.C. [MOST 106-2221-E-008-053-MY3]

Ask authors/readers for more resources

Size-induced granular segregation was performed systematically and experimentally in an almost fully filled double-walled rotating drum at 10 different rotation speeds and two different side wall types. The motion of the granular materials was recorded using a high-speed camera for image analysis of particle segregation development in the drum. With continual tracking of the particle movements, the velocity, fluctuations, and granular temperatures were measured. The experimental results indicate that both rotation speeds and friction coefficient of side walls significantly affect segregation phenomena in binary-size mixture granular flows. The results demonstrate similar situations to the Brazil-nut effect and its reverse in the radial direction at either high or a low rotational speed (where the Froude number (Fr) is far from 1). At these instances, the maximum granular temperature occurs near the side walls. Specifically, a double segregation effect (DSE) is found at Froude number (Fr) close to 1. These results can be used in many industrial processes, for example, size grading of materials, screening of impurities, and different structures of functionally graded materials. Moreover, the maximum granular temperature occurs in the middle of the ring space. It causes small particles to move toward both side walls as it pushes bigger particles to accumulate in the middle of the ring space of rotating drum. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available