4.7 Article

The influence of graphene on the dynamic mechanical behaviour of shear thickening fluids

Journal

ADVANCED POWDER TECHNOLOGY
Volume 30, Issue 10, Pages 2416-2421

Publisher

ELSEVIER
DOI: 10.1016/j.apt.2019.07.025

Keywords

Shear thickening fluid; Graphene; Viscosity; Lubrication force; Flow stress

Funding

  1. National Natural Science Foundation of China [11672214]

Ask authors/readers for more resources

The viscosity and shear thickening efficiency of the nanoparticle-based shear thickening fluids (STFs) were influenced by hydrodynamic lubrication force between nanoparticles. To enhance such an influence and improve the performance of STF, graphene was adopted to reinforce SiO2 nanoparticle-based STF in this paper. The viscosity of the reinforced STF was improved obviously by graphene, which makes an increase of 30% compared to the pure STF. In order to characterize the influence of graphene on the flow stress of STF at high strain rates, a split Hopkinson pressure bar was implemented to test the dynamic compressive mechanical properties at strain rates in the range from 3 x 10(3) to 10(4)/s. The results showed that graphene has a significant influence on the flow stress of reinforced STF at different strain rates compared to the pure STF, and the effects of the strain rate and graphene volume fraction on the flow stress were analyzed. Based on the hydrodynamic lubrication force theory, the attribution done by grahpene to the hydrodynamic lubrication force in STF was discussed. The results of the paper provide an efficient way to develop a novel STF with high shear thickening efficiency. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available