4.8 Article

High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting

Journal

ADVANCED MATERIALS
Volume 31, Issue 49, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201905099

Keywords

expanded graphite; graphite sheets; phase change composites; thermal conductivity; thermal energy harvesting

Funding

  1. National Natural Science Foundation of China [51876117]
  2. National Key R&D Program of China [2018YFE0100300]
  3. Innovative Research Groups of National Natural Science Foundation of China [51521004]

Ask authors/readers for more resources

Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (K-PCM) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m(-1) K-1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance K-PCM in the range of 4.4-35.0 W m(-1) K-1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available