4.8 Article

Self-Healing and Stretchable 3D-Printed Organic Thermoelectrics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 51, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201905426

Keywords

3D-printed thermoelectrics; PEDOT; PSS; self-healing polymer; self-healing thermoelectrics; stretchable polymer; stretchable thermoelectrics

Funding

  1. KAUST Solar Center Competitive Fund (CCF)
  2. King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [OSR-CRG2018-3737]

Ask authors/readers for more resources

With the advent of flexible and wearable electronics and sensors, there is an urgent need to develop energy-harvesting solutions that are compatible with such wearables. However, many of the proposed energy-harvesting solutions lack the necessary mechanical properties, which make them susceptible to damage by repetitive and continuous mechanical stresses, leading to serious degradation in device performance. Developing new energy materials that possess high deformability and self-healability is essential to realize self-powered devices. Herein, a thermoelectric ternary composite is demonstrated that possesses both self-healing and stretchable properties produced via 3D-printing method. The ternary composite films provide stable thermoelectric performance during viscoelastic deformation, up to 35% tensile strain. Importantly, after being completely severed by cutting, the composite films autonomously recover their thermoelectric properties with a rapid response time of around one second. Using this self-healable and solution-processable composite, 3D-printed thermoelectric generators are fabricated, which retain above 85% of their initial power output, even after repetitive cutting and self-healing. This approach represents a significant step in achieving damage-free and truly wearable 3D-printed organic thermoelectrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available