4.8 Article

A Novel Double-Crosslinking-Double-Network Design for Injectable Hydrogels with Enhanced Tissue Adhesion and Antibacterial Capability for Wound Treatment

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201904156

Keywords

antibacterial capability; double-crosslinking-double-network; photocrosslinkable and injectable chitosan; tissue adhesion; wound healing

Funding

  1. Hong Kong Scholars Program [XJ2018003]
  2. Fundamental Research Funds for the Central Universities [FRF-TP-18-004A1]
  3. National Key Research and Development Program of China [2016YFC1102500]
  4. National Natural Science Foundation of China [51871020, 51772006]
  5. Beijing Municipal Science &Technology Commission Projects [Z181100002018001]

Ask authors/readers for more resources

Most photocrosslinkable hydrogels have inadequacy in either mechanical performance or biodegradability. This issue is addressed by adopting a novel hydrogel design by introducing two different chitosan chains (catechol-modified methacryloyl chitosan, CMC; methacryloyl chitosan, MC) via the simultaneous crosslinking of carbon-carbon double bonds and catechol-Fe3+ chelation. This leads to an interpenetrating network of two chitosan chains with high crosslinking-network density, which enhances mechanical performance including high compressive modulus and high ductility. The chitosan polymers not only endow the hydrogels with good biodegradability and biocompatibility, they also offer intrinsic antibacterial capability. The quinone groups formed by Fe3+ oxidation and protonated amino groups of chitosan polymer further enhance antibacterial property of the hydrogels. Serving as one of the two types of crosslinking mechanisms, the catechol-Fe3+ chelation can covalently link with amino, thiol, and imidazole groups, which substantially enhance the hydrogel's adhesion to biological tissues. The hydrogel's adhesion to porcine skin shows a lap shear strength of 18.1 kPa, which is 6-time that of the clinically established Fibrin Glue's adhesion. The hydrogel also has a good hemostatic performance due to the superior tissue adhesion as demonstrated with a hemorrhaging liver model. Furthermore, the hydrogel can remarkably promote healing of bacteria-infected wound.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available