4.5 Article

Mechanism of biochar soil pore-gas-water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling

Journal

ACTA GEOPHYSICA
Volume 68, Issue 1, Pages 207-217

Publisher

SPRINGER INT PUBL AG
DOI: 10.1007/s11600-019-00387-y

Keywords

KNN modeling; Biochar-amended soil; Coastal species; Compaction; Suction

Funding

  1. National Natural Science Foundation (NSFC) Youth Project [41907252]
  2. Shantou University Scientific Research Fund, China [NTF17007]
  3. International Collaboration Fund from Academic Melting Pot Program from King Mongkut's Institute of Technology Ladkrabang (KMITL) [KREF206237]

Ask authors/readers for more resources

Soil compaction has contrasting effect on soil strength (i.e., positive) and vegetation growth (i.e., negative), respectively. Biochar has been utilized mostly in combination with soils in both agricultural fields (i.e., loose soils) and geo-structures (i.e., dense soil slopes, landfill cover) for improving water retention due to its microporous structure. Biochar is also found to be useful to reduce gas permeability in compacted soil recently. However, the efficiency of biochar in reducing gas permeability in loose and dense soils is rarely understood. The objective of this study is to analyze effects of compaction on gas permeability in soil at different degrees of compaction (i.e., 65%, 80% and 95%) and also different biochar amendment contents (0%, 5% and 10%). Another aim is to identify relative significance of parameters (soil suction, water content, biochar content and compaction) in affecting gas permeability. Experiments were conducted before applying k-nearest neighbor (KNN) modeling technique for identifying relative significance of parameters. Biochar was synthesized from a coastal invasive species (water hyacinth), which has relatively no influence on food chain (as unlike in biochar produced from biomass such as rice husk, straw, peanut shell). Based on measurements and KNN modeling, it was found that gas permeability of biochar-amended soil is relatively lower than that of soil without amendment. It was found from KNN model that for denser soils, higher amount of soil suction is mobilized for a significant increase in gas permeability as compared to loose soils. Among all parameters, soil suction is found to be most influential in affecting gas permeability followed by water content and compaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available